
The tool of thought for software solutions 

 

HTMLRenderer 

User Guide 

Dyalog APL Version 17.1 
 

Dyalog Limited 

Minchens Court, Minchens Lane 

Bramley, Hampshire 

RG26 5BH 

United Kingdom 
 

tel: +44 1256 830030 

fax: +44 1256 830031 

email: support@dyalog.com 

http://www.dyalog.com 

Dyalog is a trademark of Dyalog Limited 
Copyright © 1982-2019 

 

Dyalog is a trademark of Dyalog Limited 

Copyright © 1982 – 2019 by Dyalog Limited. 

All rights reserved. 

  

mailto:support@dyalog.com


Dyalog Version 17.1 

Revision: 2020010801_171 

No part of this publication may be reproduced in any form by any means without the 

prior written permission of Dyalog Limited, Minchens Court, Minchens Lane, Bramley, 

Hampshire, RG26 5BH, United Kingdom. 

Dyalog Limited makes no representations or warranties with respect to the contents 

hereof and specifically disclaims any implied warranties of merchantability or fitness for 

any particular purpose. Dyalog Limited reserves the right to revise this publication 

without notification. 

UNIX is a registered trademark of The Open Group. 

 

All other trademarks and copyrights are acknowledged. 



Contents 

1  INTRODUCTION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1  
1.1 Hello World ....................................................................................................... 2 

1.2 Other Resources ................................................................................................ 2 

1.3 User Events ....................................................................................................... 2 

1.4 An Example of a Portal ...................................................................................... 3 

2  SIMPLE  EXAMPLES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4  
2.1 Render a SharpPlot chart .................................................................................. 4 

2.2 An application with 2 Pages .............................................................................. 4 

2.3 A Form with a Button ........................................................................................ 5 

2.4 Using HttpUtils with HTMLRenderer .......................................................... 6 

3  GENERATING HTML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9  

4  TECHNICAL OVERVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10  
4.1 HTMLRenderer on non-Windows platforms ................................................... 10 

5  DYALOG GUI IMPLEMENTATION FOR HTMLRENDERER  . . . . . . . . . . . . . . . . . . .  11  
5.1 Properties ........................................................................................................ 11 

5.2 Properties Specific to HTMLRenderer ............................................................. 11 

5.3 Events .............................................................................................................. 12 

5.4 Events Specific to HTMLRenderer ................................................................... 13 

5.5 Methods .......................................................................................................... 15 

5.6 Methods Specific to HTMLRenderer ............................................................... 15 

6  WEBSOCKET SUPPORT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16  
6.1 Websocket Overview ...................................................................................... 16 

7  DEBUGGING HTMLRENDERER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18  

8  RUNNING HTMLRENDERER UNDER A WINDOWS RUNTIME 
APPLICATION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19  

9  RESOURCES AND REFERENCES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20  



 HTMLRenderer User Guide 

1   Introduction 

Introduced with Dyalog 16.0, HTMLRenderer is an object which provides a cross-
platform mechanism for producing Graphical User Interfaces (GUI), based on Hypertext 
Markup Language (HTML). As of Dyalog version 17.1 HTMLRenderer is available on 
Microsoft Windows, Apple macOS, and Linux (excluding the Raspberry Pi). Using 
HTMLRenderer, your application can use the same user interface code and work in the 
same way across platforms. 

HTMLRenderer is a built-in class, instances of which are created and managed using the 
Dyalog GUI framework functions ⎕WC/⎕WS/⎕WG/⎕NEW and ⎕DQ/⎕NQ. User interfaces 
are defined using HTML, which can, in turn, make references to code and data in a 
number of additional formats such as JavaScript to manage highly interactive content, 
Cascading Style Sheets (CSS) for both simple and sophisticated styling, SVG, JPG or BMP 
for images. 

On all platforms, the creation of an HTMLRenderer object causes APL to open a new 
window and run a copy of the Chromium Embedded Framework (CEF), passing the 
HTML to the CEF for rendering. 

Dyalog APL version 17.1 introduces several new features for HTMLRenderer. 

• Support for websockets, allowing asynchronous, bi-directional communication 
between the APL session and the CEF client window. 

• A DoPopup event that is triggered when the CEF client issues a request for a new 
window. 

• A SelectCertificate event that is triggered when the CEF client issues a request 
for a resource that requires a certificate. 

• A ShowDevTools method that will toggle the visibility of the Chromium Developer 
Tools to inspect and debug from the CEF client. 

• Support for several ⎕WC properties including Caption, SysMenu, MinButton, 
MaxButton, Sizeable and Moveable.  Some properties may not be available on a 
particular platform because that platform does not have underlying support for the 
property; setting such a property will have no effect, nor will it cause an error. 

 
The HTMLRenderer can be disabled by setting the ENABLE_CEF environment variable to 
0; if ENABLE_CEF is not set or is set to 1 then the HTMLRenderer is enabled (the 
default).   

On some platforms the HTMLRenderer and RConnect (the Dyalog R interface) both 
expect to run in the main thread; attempting to run both in the same process will lead to 
APL terminating uncleanly; if you want to use RConnect set ENABLE_CEF=0.  Attempting 
to create an instance of HTMLRenderer when ENABLE_CEF is 0 will cause a "LIMIT 
ERROR: The object could not be created" error to be signalled.  See 
section 4, Technical Overview for more information on enabling the HTMLRenderer on 
various platforms. 

 



 HTMLRenderer User Guide 2 

1.1   Hello World 

A minimal example of using HTMLRenderer would be the following: The first line of code 
below creates an HTML header which includes a title tag – this will set the caption for 
the form that contains the HTMLRenderer. The second line defines the HTML body, and 
uses simple HTML tags to mark text up as bold, italic and underlined. Finally, an 
HTMLRenderer is created, using the header and body as the HTML and setting the size 
property as well: 

head←'<head><title>Hello, World!</title><head>' 
body←'<body><b>APL</b> + </i>HTML</i> = <u>TRUE</u></body>' 
'hr' ⎕WC 'HTMLRenderer' ('HTML' (head,body)) ('Size' (10 20)) 

Under Microsoft Windows, the result will be:

 

1.2   Other Resources 

All HTML applications are based on an initial HTML document. Most modern user 
interfaces will reference other documents, such as JavaScript and CSS files which contain 
code that can influence the way the base HTML is rendered, image files, and of course 
hyperlinks to other pages. 

If the HTML contains references to other resources, the CEF will retrieve each one by 
making an HTTP request. Each request with a URL that matches a triggering pattern in 
InterceptedURLs will generate an HTTPRequest event on the instance of 
HTMLRenderer, which can be directed to a callback function in APL. Requests with URLs 
that do not match a pattern in InterceptedURLs or that match a pattern with a 0 in 
the second column will cause the CEF to push the request out to the network and see 
whether an external server is able to service it.  InterceptedURLs allows an APL 
application to decide how which content it wants to provide, and to what extent it 
wants to act as a portal for other services that will provide the rest of the data. 

1.3   User Events 

When a user submits an HTML form for processing, or a user interface component which 
is being managed by JavaScript code wishes to make a server request, this is also done 
by making an HTTP Request. These requests will also be directed through the same 
InterceptedURLs mechanism. This makes it possible to develop interactive 
applications where your APL code is responding to user input, as well as providing the 
content of resources needed to render the UI. 

  



 HTMLRenderer User Guide 3 

1.4   An Example of a Portal 

The following code illustrates how HTMLRenderer objects can be used as children of normal 
⎕WC forms under Microsoft Windows. By setting the AsChild property of an HTMLRenderer 
object to 1, we request that the window be embedded as a sub-form of another window. 

'f1'⎕WC'Form' 'Important Stuff' ('Coord' 'ScaledPixel')('Size' 820 1100) 
)copy dfns pco 
'f1.label1' ⎕WC 'Label' 'Primes < 100' (10 40) 
'f1.primes' ⎕WC 'Grid' ('*' @ (0∘pco) 10 10⍴⍳100) ('Posn' 40 40) 
f1.primes.(TitleHeight TitleWidth CellWidths Size)←0 0 25 (200 255) 
'f1.label2' ⎕WC 'Label' 'Has the Large Hadron Collider destroyed the world yet?' (360 40) 
'f1.areWeStillHere' ⎕WC 'HTMLRenderer' ('AsChild' 1) ('Posn' 390 40)('Size' 400 500) 
f1.areWeStillHere.URL←'http://hasthelargehadroncolliderdestroyedtheworldyet.com' 
twitter←'<a class="twittertimeline" href="https://twitter.com/dyalogapl">' 
twitter,←'Tweets by dyalogapl</a>' 
twitter,←'<script async src="//platform.twitter.com/widgets.js" charset="utf-8"></script>' 
'f1.twitter' ⎕WC 'HTMLRenderer' ('AsChild' 1) ('Posn' 40 570)('Size' 750 500) 
f1.twitter.HTML←twitter 

The result after clicking on the "Tweets by dyalogapl" link can be seen below; a form that 
contains a Windows grid showing prime numbers between 1 and 100 as well as provides live 
feeds from two external sites. Note that no callbacks have been assigned and no URLs are 
indicated to be intercepted (InterceptedURLs was not set); in this case the 
HTMLRenderer always goes to the network to satisfy requests for data. 

 

 



 HTMLRenderer User Guide 4 

2   Simple Examples 

2.1  Render a SharpPlot chart 

      )LOAD sharpplot 
saved… 

      'HR' ⎕WC 'HTMLRenderer'  

      HR.HTML←#.Samples.Contour.RenderSvg #.SvgMode.FixedAspect 

 

2.2  An application with 2 Pages 

The function on the next page creates a very simple application with 2 pages: A home page 
called main and another page called clicked which is displayed if the user follows a link. 
Initialise the application by calling myapp with an empty right argument; this will cause it to 
create a namespace containing all the resources, and then create an HTMLRenderer and set 
the URL property so that it navigates to the first page – and itself as the callback function. 

If called with a non-empty argument, the function handles callbacks. It extracts the page name 
from the URL, which corresponds to a variable in the namespace and returns the value of that 
variable as the response to the request. 



 HTMLRenderer User Guide 5 

     ∇ r←myapp args;root;evt;int;url;size;coord;obj;op;sc;st;mime;hdr;data;meth;page 
[1]   ⍝ Serve up a small 2 page application 
[2] 
[3]    root←'http://myapp/'  ⍝ set the root, requests from CEF will start with this 
[4] 
[5]    :If 0∊⍴args ⍝ empty args means we're doing Setup 
[6]    ⍝ define the "app" in MyApp, 2 static HTML pages 
[7]        #.MyApp←⎕NS'' 
[8]    ⍝ HTML for the "main" page 
[9]        #.MyApp.main←'Hello APLers<br/>Click <a href="clicked">here</a>!' 
[10]   ⍝ HTML for the "clicked" page 
[11]       #.MyApp.clicked←'Thank you!<br/>Click <a href="main">here</a> to go back!' 
[12]   ⍝ we want to intercepts all requests that begin with the root 
[13]       int←'InterceptedURLs'(1 2⍴(root,'*')1) 
[14]   ⍝ whenever we get a request for a resource, call myapp (this function) 
[15]       evt←'Event' 'HTTPRequest' 'myapp' 
[16]   ⍝ set the initial URL to the "main" page 
[17]       url←'URL'(root,'main') 
[18]   ⍝ set some window parameters 
[19]       size←'Size'(150 300) ⋄ coord←'Coord' 'ScaledPixel' 
[20]   ⍝ and off we go... 
[21]       'hr'⎕WC'HTMLRenderer' url evt int size coord 
[22] 
[23]   :Else ⍝ handle the HTTPRequest event 
[24]       (obj evt op int sc st mime url hdr data meth)←11↑args 
[25]   ⍝ extract the page name 
[26]       page←(≢root)↓url 
[27]   ⍝ does the page exist? 
[28]       :If 2=#.MyApp.⎕NC page 
[29]   ⍝ set the HTTP status and text for a successful request 
[30]           (sc st)←200 'OK' 
[31]   ⍝ set the response data to the new page's HTML 
[32]           data←#.MyApp⍎page 
[33]       :Else 
[34]   ⍝ set the HTTP status and text for a failed (not found) 
[35]           (sc st)←404 'Not Found' 
[36]           data←'<h2>Page not found!</h2>' 
[37]       :EndIf 
[38]   ⍝ set the MIME type for the response 
[39]       mime←'text/html' 
[40]   ⍝ indicate that we've intercepted and handled this request 
[41]       int←1 
[42]       r←obj evt op int sc st mime url hdr data 
[43]   :EndIf 
     ∇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

2.3   A Form with a Button 

Define a callback function: 

     ∇ r←my_callback args;obj;evt;op;sc;st;mime;url;hdr;data;int;meth 
[1]   ⍝ Our first HTTPRequest callback function 
[2]    (obj evt op int sc st mime url hdr data meth)←11↑args 
[3]    int←1                             ⍝ Intercept this call 
[4]    (sc st mime)←200 'OK' 'text/html' ⍝ HTTP success code 
[5]    url←hdr←''                        ⍝ no url or header 
[6]    data←'<h2>Thank you!<h2>'         ⍝ response Data 
[7]    r←(obj evt op int sc st mime url hdr data) 
     ∇ 

Now, define a form and set up the callback:       

      'hr' ⎕WC 'HTMLRenderer' '<p>Hello, <b>APL</b>ers!</p>' 
      hr.Caption←'Form with Button' 
      hr.(Coord Size Posn)←'Pixel'(300 300)(20 20) 
      hr.HTML,←'<form action="#"><button>Click Me!</button></form>' 
      hr.onHTTPRequest←'my_callback' 
      hr.InterceptedURLs←1 2⍴'*' 1  ⍝ intercept all requests 

  



 HTMLRenderer User Guide 6 

The form should look like this: 

 

If you click on the button, the content should be replaced: 

 

2.4   Using HttpUtils with HTMLRenderer 

HttpUtils is a utility namespace provided with Dyalog APL v16.0 and later.  It contains 
classes and functions for processing and formatting HTTP request and response messages.  
HttpUtils is designed to work with HTMLRenderer and with Conga1 'HTTP' mode. 

HttpUtils is distributed in the /Library/Conga/ folder in your Dyalog installation and can be 
loaded using the SALT Load command. Both of the following statements will load HttpUtils, 
though the latter is suitable for running under program control. 
      ]load HttpUtils 
⎕SE.SALT.Load 'HttpUtils' 

HttpUtils is maintained in the library-conga Dyalog GitHub repository found at 
https://github.com/Dyalog/library-conga. There you can see the revision history and you may 
participate in the development community by reporting issues and by posting questions and 
suggestions. 

The following example shows a simple HTML form with 2 input fields and a submit button.  
The callback is processed using the HttpRequest and HttpResponse classes found in 
HttpUtils. 

  

 

1 Conga is the Dyalog TCP/IP utility library – HTTP mode was introduced in Conga version 3.0 

https://github.com/Dyalog/library-conga


 HTMLRenderer User Guide 7 

     ∇ r←SimpleForm args;evt;html;req;resp;who;iurls 
[1]    :If 0∊⍴args ⍝ Setup 
[2]        html←'<form method="post" action="SimpleForm"><table>' 
[3]        html,←'<tr><td>First: </td><td><input name="first"/></td></tr>' 
[4]        html,←'<tr><td>Last: </td><td><input name="last"/></td></tr>' 
[5]        html,←'<tr><td colspan="2"><button>Click Me</button></td></tr>' 
[6]        html,←'</table></form>' 
[7]        evt←'Event' 'HTTPRequest' 'SimpleForm' 
[8]        iurls←'InterceptedURLs'(1 2⍴'*' 1) 
[9]        'hr'⎕WC'HTMLRenderer'('HTML'html)('Coord' 'ScaledPixel')('Size'(200 400))iurls evt 
[10]   :Else ⍝ handle the callback 
[11]       req←⎕NEW #.HttpUtils.HttpRequest args ⍝ create a request from the callback args 
[12]       resp←⎕NEW #.HttpUtils.HttpResponse args ⍝ create a response from the callback args 
[13]       who←req.(FormData∘Get)¨'first' 'last' ⍝ req.FormData has the data from the form 
[14]       who←∊' ',¨who 
[15]       resp.Content←'<h2>Welcome ',who,'!</h2>' ⍝ set the content for the response 
[16]       r←resp.ToHtmlRenderer ⍝ convert the response to HTMLRenderer format 
[17]   :EndIf 
      ∇ 

Running SimpleForm '' displays the form.  After filling in the form and clicking the button, 
SimpleForm is called again as the callback function for the HTTPRequest event, but this time 
args is non-empty and the callback portion lines [11-16] are executed. 

 

[11]       req←⎕NEW #.HttpUtils.HttpRequest args   ⍝ create a request from the 
callback args 
The HttpRequest constructor accepts an argument of HTMLRenderer callback data and will 
parse and extract the various bits of the HTTP message into a more useful and accessible 
format. 

[12]       resp←⎕NEW #.HttpUtils.HttpResponse args ⍝ create a response from the 
callback args 
We create a response object to send back to HTMLRenderer.  Like HttpRequest, the 
HttpResponse constructor also accepts an argument of the HTMLRenderer callback data. 

[13]       who←req.(FormData∘Get)¨'first' 'last'   ⍝ req.FormData has the data 
from the form 
The HttpRequest class has extracted the HTML form field values into FormData.  The 
values are retrievable by their field names in the HTML form, in this case 'first' and 'last'.  Refer 
to lines [3-4] in SimpleForm to see where the field names were originally assigned. 
 
[14]       who←∊' ',¨who 
[15]       resp.Content←'<h2>Welcome',who,'!</h2>' ⍝ set the content for the 
response 
We now set Content in the response to be our new content for the page.  The default 
content type is 'text/html', but other content types can be specified as appropriate for your 
application. 
 
[16]       r←resp.ToHtmlRenderer                   ⍝ and send it back 

Finally, the response's ToHtmlRenderer method formats and populates a result 
appropriate for the callback and our friendly message is displayed. 



 HTMLRenderer User Guide 8 

 



 HTMLRenderer User Guide 9 

3     Generating HTML 

To use the HTMLRenderer, you either need to be able to produce HTML and associated 
documents, or allow HTTP requests to pass through, as demonstrated in the example in 
chapter 1. 

Dyalog provides a number of tools to help you generate HTML. 

SharpPlot 

The SVG data produced by the RenderSVG method can be assigned directly to the HTML 
property of an HTMLRenderer object. The CEF accepts SVG in place of HTML and is able to 
render it without further intervention. You can also use the various Save… functions in 
SharpPlot to save graphs in SVG or other formats, and link to them using an HTML img tag. 

DUI – Dyalog User Interface Utility Library 

DUI is an evolving library to assist in creating HTML content.  Originally a part of MiServer, DUI 
is designed to enable you to create HTML that can be run locally with HTMLRenderer or on 
the net with MiServer – without changing your code. DUI contains APL code that is able to 
generate HTML, CSS and JavaScript based widgets based on the HTML5 widget set, Syncfusion 
controls (which are bundled with Dyalog), jQueryUI and other third-party widgets. DUI is 
currently available from the Dyalog GitHub repository at https://github.com/Dyalog/DUI. To 
use DUI, you will need to download or clone the repository.  To illustrate the DUI style of 
coding, the following code should produce a form with two input fields and a button: 

]load /path_to_DUI/DUI 
DUI.Initialize 
page←⎕NEW Page 
page.Add _.title 'Hello World!' 
page.Add _.Style 'body' ('font-family' 'Verdana') 
page.Add _.h3 'Hello World!' 
form←page.Add _.Form 
'fn' form.Add _.Input 'text' 'Drake' 'First Name: ' 
'ln' form.Add _.Input 'text' 'Mallard' ' :Last Name' 'right' 
p1←'p1' form.Add _.p '' 
b1←'b1' form.Add _.Button 'Press Me' 
b1.style←'color:purple' 
page.Size←200 600 

 

https://github.com/Dyalog/DUI


 HTMLRenderer User Guide 10 

4 Technical Overview 

The HTML Renderer is implemented using the Chromium Embedded Framework (CEF); for 
more information on CEF visit 
https://en.wikipedia.org/wiki/Chromium_Embedded_Framework. 

4.1   HTMLRenderer on non-Windows platforms 

The HTMLRenderer on non-Microsoft Windows platforms is an X-Windows application. As 
such there are a set of pre-requisites that are needed on the operating system instance on 
which the Dyalog interpreter is running (this in X-Windows terms is the server) and a set of 
pre-requisites that are needed on the operating system instance where the output will be 
displayed (in X-Windows terms the client). In most cases these two sets of functionality run in 
the same operating system instance. However, this means that a typical non-GUI installation 
of a Linux distribution is unlikely to allow you to create an HTMLRenderer object even if you 
are trying to display it elsewhere by setting the DISPLAY variable appropriately. 

For Linux, we have tried creating the HTMLRenderer on a number of common distributions 
and versions.  See https://forums.dyalog.com/viewtopic.php?f=20&t=1505 which details what 
pre-requisites are needed for the HTMLRenderer on those distributions.   

If you get a LIMIT ERROR when attempting to create an HTMLRenderer object and you are 

either using a distribution/version that is not in the list below, or have ensured that you have 

met the pre-requisites mentioned below, then run the following expression from within 

Dyalog APL: 

                )sh ldd $DYALOG/lib/htmlrenderer.so | grep found 

This should list any missing pre-reqs.  Please let Dyalog know so that we can update the 

supported versions matrix. 

Note: As of 2019-05-10, Dyalog does not support the HTMLRenderer being used on a Virtual 

Machine in which Linux has been installed. We are attempting to understand why this does 

not run reliably, but the issue may be intractable. 

  

 

 

https://en.wikipedia.org/wiki/Chromium_Embedded_Framework
https://forums.dyalog.com/viewtopic.php?f=20&t=1505


 HTMLRenderer User Guide 11 

5 Dyalog GUI Implementation for HTMLRenderer 

This section highlights specific aspects the HTMLRenderer.  For a complete description of the 
Properties, Events and Methods for the HTMLRenderer object, please refer to the object 
reference at http://help.dyalog.com/17.1/Content/GUI/Objects/HTMLRenderer.htm 

5.1     Properties 

As HTMLRenderer is an object in the Dyalog GUI framework, it has many of the expected 
properties for a ⎕WC GUI control.  The properties for HTMLRenderer are found in table 1, with 
properties specific to HTMLRenderer highlighted in red. 

Table 1. HTMLRenderer properties 

Type HTML Posn 

Size URL Coord 

Border Visible Event 

Sizeable Moveable SysMenu 

MaxButton MinButton IconObj 

Data Attach Translate 

KeepOnClose AsChild InterceptedURLs 

CEFVersion Caption MethodList 

ChildList EventList PropList 

 
Note that the caption appearing in the title bar of the HTMLRenderer window can be set 
either with the Caption property or by a <title> element within the <head> element in the 

HTML for the page.  If both are set, the <title> element takes priority.  For example: 

html←'<head><title>Title Wins!</title></head><body>Test</body>' 
'hr' ⎕WC 'HTMLRenderer' ('HTML' html)('Caption' 'Cap Wins!')('Size' (10 20))  

5.2  Properties Specific to HTMLRenderer 

HTML 

The HTML property is a character vector of the content rendered in the object. The interpreter 

does not perform any pre-processing of the text. As such, it must be properly formed HTML 
using single-byte (⎕DR 80 or 82) character data, including any necessary escaping and 
encoding.  

NOTE: Typically, you will need to UTF-8 encode any text outside the Unicode range 0-127. 

http://help.dyalog.com/17.1/Content/GUI/Objects/HTMLRenderer.htm


 HTMLRenderer User Guide 12 

URL 

The URL property is a character vector representing the "root" URL of the object. If not 

specified, 'dyalog_root' is the default value of URL. If subsequent requests for resources are 
received via the HTTPRequest event, the URL element of the event's arguments can be 
examined to see if it begins with the "root".  If so, the content is intended to be provided 
locally by your application, otherwise, it should be retrieved from the URL element of the 
argument. 

AsChild 

This property only has an effect on Microsoft Windows platforms. 

The AsChild property is a Boolean indicating how the HTMLRenderer object should be 

treated. Possible values are: 

• 1 – the HTMLRenderer object should be treated as a child of its parent object. 

• 0 – the HTMLRenderer object should be treated as a top level object similar to how a 
Form object is treated. 

The default is 0. 

InterceptedURLs 

The InterceptedURLs property is a 2-column matrix that specifies whether 

HTMLRenderer will trigger an HTTPRequest event for the requested URL. The first column is a 
wild-carded character scalar or vector containing a pattern to match.  The second column is a 
Boolean indicating whether HTMLRenderer should trigger an HTTPRequest event for a URL 
matching the corresponding pattern.  InterceptedURLs may contain any number of rows.  
The default is 0 2⍴'' meaning that no URLs will trigger an HTTPRequest event. 

Examples: 

The following will trigger an HTTPRequest event for all requested URLs 
      InterceptedURLs ← 1 2⍴'*' 1   
 
The following will attempt to retrieve from the net URLs containing '.dyalog.com'  and trigger 
an HTTPRequest event for all other requested URLS 
      InterceptedURLs ← 2 2⍴'*.dyalog.com*' 0 '*' 1 
 

CEFVersion 

Returns version information about the CEF.  This is used primarily for support and debugging 
purposes. 

 

5.3     Events 

The events for HTMLRenderer are found in table 2, with events specific to HTMLRenderer 
highlighted in red. 

Table 2. HTMLRenderer events 

Close Create HTTPRequest  

WebSocketUpgrade WebSocketReceive WebSocketClose 

WebSocketError DoPopup SelectCertificate 

 



 HTMLRenderer User Guide 13 

5.4     Events Specific to HTMLRenderer 

HTTPRequest 
An HTTPRequest event is raised whenever content is required that is not provided by the 

HTML property. This could be generated by a form submission, clicking on a hyperlink, an AJAX 
request or a link to a resource like a stylesheet, image or JavaScript file. 

The event message reported as the result of ⎕DQ or supplied as the right argument to your 
callback function, is a 11-element vector as described in table 3.  

NOTE: the event message only had 10 elements in version 16.0. Application code should not 
assume a specific length for this, or indeed any other event messages. 

Table 3. Explanation of the 11-element vector HTTPRequest event message 
[1] HTMLRenderer object name or reference  

[2] Event name 'HTTPRequest' 

[3] Constant 'ProcessRequest' 

[4] 0 

[5] 0 

[6] '' 

[7] '' 

[8] Requested URL 

[9] HTTP Request Headers 

[10] HTTP Request Body 

[11] HTTP Method (new in version 17.0): typically 
'GET' or 'POST', but other methods may occur. 

When preparing a response, elements of the event message need to be updated. Specifically: 

• [4] : set to 1 if you will handle the request by updating other elements of the event 

message. 
 
In a typical scenario, you will check whether the requested URL in [8] begins with the 
"root" URL: 
o If it does, then your application will supply the content of the response.  In this 

situation, update the appropriate elements of the event message, setting 
element [4] to 1 and return. 

o If it does not, then the request is for some external resource.  Return without 
changing any elements of the event message and HTMLRenderer will attempt to 
retrieve the requested resource. 

• [5] : set to the HTTP status code for the response.  Success is indicated by code 200. 

• [6] : set to the HTTP status message for the response.  Success is indicated by the 
message 'OK'. 



 HTMLRenderer User Guide 14 

• [7] : set to the MIME type of the response. For sending HTML, the MIME type is 
'text/html'. 

• [9] : set to any HTTP message headers necessary for the response. 

• [10] : set to the body of the response. Typically this will be HTML. 

WebSocketUpgrade, WebSocketReceive, WebSocketClose, WebSocketEnd 
Please refer to Section 6, Websocket support for more information. 

DoPopup 
A DoPopup event is raised whenever the CEF client executes a request for a new window to 

be opened.  This would typically be when a link element specifies a target attribute of 
"_blank", as in: 

<a href="http://www.dyalog.com" target="_blank"> 

When a DoPopup event occurs, the application should inspect the request and open another 

HTMLRenderer as appropriate. 

SelectCertificate 
A SelectCertificate event is raised whenever a resource is requested from a server 

that requires a certificate for security.  The available certificates are in element [7] of the 
callback arguments.  The application should select one of the certificates and set element [3] 
to its origin-0 index in the Certificates element. 

Elements of the SelectCertificate callback arguments 
[1] HTMLRenderer object name or reference  

[2] Event 'SelectCertificate' or 848 

[3] Certificate index (result only) 

[4] Host address 

[5] Host port 

[6] 'is proxy' 

[7] Certificates (see below) 

 
Certificates is a vector of namespaces, each of which represents a certificate and contains the 
following variables: 

Name Description 

DER The DER-encoded certificate 

Subject A namespace containing variables CommonName, CountryName and 
DisplayName for the certificate subject. 

Issuer A namespace containing variables CommonName, CountryName and 
DisplayName for the certificate issuer. 

SerialNumber Character vector certificate serial number 



 HTMLRenderer User Guide 15 

5.5     Methods 

The methods for HTMLRenderer are found in table 4, with events specific to HTMLRenderer 
highlighted in red. 

Table 4. HTMLRenderer methods 

Detach PrintToPDF WebSocketSend 

WebSocketClose ShowDevTools Wait 

 

5.6     Methods Specific to HTMLRenderer 

WebSocketSend, WebSocketClose 
Please refer to section 6, WebSocket Support, later in this document. 

ShowDevTools  
The ShowDevTools method is used to open or close the Chromium Developer Tools console 

as in: 

'hr' ⎕WC 'HTMLRenderer' 
hr.ShowDevTools 1  ⍝ display developer tools 
hr.ShowDevTools 0  ⍝ hide developer tools 



 HTMLRenderer User Guide 16 

6 Websocket support 

6.1     Websocket Overview 

In a typical HTTP application, all communication originates from the client which sends 
requests to the server which in turn sends back a response.  When an application wanted to 
"push" information from the server to the client, the typical way to fake this was to have the 
client periodically poll the server so the server could send back any information that it had to 
offer.  With the use of websockets, true asynchronous, bi-directional transmission between 
the client and server is possible.   

HTMLRenderer presents a straightforward API to use websockets. A typical scenario would 
look something like this: 

1. The client initiates an HTTP "upgrade" request to the server.  After some validation 
and handshaking with the server, the websocket is established. With 
HTMLRenderer, the validation and handshaking are currently done behind the 
scenes and by the time you receive a WebSocketUpgrade event, the websocket 
already established. 

2. Once the websocket is established, either the client or the server can send 
information which will trigger a "receive" event on the other end.  No response is 
expected as a part of the websocket protocol.  Whatever response you send (or 
don't) is up to your specific application. 

3. Either side can close the websocket. 

4. Websocket error events may be triggered when an unexpected error, like disruption 
in the connection, occurs.  

JavaScript in the CEF client  HTMLRenderer in the workspace 

ws = new websocket(url); 
Initiate the request 

→ WebSocketUpgrade event 
The websocket is established 

ws.send("message"); → WebSocketReceive event 

ws.onmessage event ← WebSocketSend method 

ws.close() → WebSocketClose event 

ws.onclose event ← WebSocketClose method 

ws.onerror event 
is triggered when there is some error 
like the connection going down 

 WebSocketError event 
occurs when there is some error like 
the connection going down 

 



 HTMLRenderer User Guide 17 

The client may request multiple upgrades resulting in multiple websockets, each with its own 
unique id. 

 



 HTMLRenderer User Guide 18 

7   Debugging HTMLRenderer 

Chromium's developer tools can be used to inspect and debug the rendered HTML content by 
calling the ShowDevTools method with an argument of 1. 

For example: 

'hr' ⎕WC 'HTMLRenderer' 
hr.ShowDevTools 1 

Will bring up the developer tools window similar to: 

 



 HTMLRenderer User Guide 19 

8 Running HTMLRenderer under a Windows 
Runtime Application 

To run HTMLRenderer under a Windows runtime interpreter (dyalogrt.exe) you should: 

1. Create your runtime environment as described in the Dyalog for Microsoft Windows 
Installation and Configuration Guide 

2. Copy the following files from the Dyalog installation folder into the same folder as 
the dyalogrt.exe: 
 

htmlrenderer.dll 
cef.pak 
cef_100_percent.pak 
cef_200_percent.pak 
cef_extensions.pak 
cef_sandbox.lib 
chrome_elf.dll 
d3dcompiler_43.dll 
d3dcompiler_47.dll 
devtools_resources.pak 
icudtl.dat 
libEGL.dll 
libGLESv2.dll 
libcef.dll 
libcef.lib 
locales 
natives_blob.bin 
snapshot_blob.bin 
swiftshader 
v8_context_snapshot.bin  



 HTMLRenderer User Guide 20 

9 Resources and References 

The Dyalog webinar “Something Old, Something New & Something Experimental” includes a discussion 
and demonstration of the HTMLRenderer; it can be viewed at https://dyalog.tv/webinar. 

Code samples can be copied-and-pasted from an HTML version of this document at 
http://docs.dyalog.com/17.1/HTMLRenderer User Guide.htm. 

 

https://dyalog.tv/webinar
http://docs.dyalog.com/17.1/HTMLRenderer%20User%20Guide.htm

